Role of active site binding interactions in 4-chlorobenzoyl-coenzyme A dehalogenase catalysis.
نویسندگان
چکیده
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA (4-HBA-CoA) via a multistep mechanism involving initial attack of Asp145 on C(4) of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of the chloride ion to form an arylated enzyme intermediate (EAr) and then ester hydrolysis in the EAr to form product. This study examines the role of binding interactions in dehalogenase catalysis. The enzyme and substrate groups positioned for favorable binding interaction were identified from the X-ray crystal structure of the enzyme-4-HBA-3'-dephospho-CoA complex. These groups were individually modified (via site-directed mutagenesis or chemical synthesis) for the purpose of disrupting the binding interaction. The changes in the Gibbs free energy of the enzyme-substrate complex (DeltaDeltaG(ES)) and enzyme-transition state complex (DeltaDeltaG) brought about by the modification were measured. Cases where DeltaDeltaG exceeds DeltaDeltaG(ES) are indicative of binding interactions used for catalysis. On the basis of this analysis, we show that the H-bond interactions between the Gly114 and Phe64 backbone amide NHs and the substrate benzoyl C=O group contribute an additional 3.1 kcal/mol of stabilization at the rate-limiting transition state. The binding interactions between the enzyme and the substrate CoA nucleotide moiety also intensify in the rate-limiting transition state, reducing the energy barrier to catalysis by an additional 3.3 kcal/mol. Together, these binding interactions contribute approximately 10(6) to the k(cat)/K(m).
منابع مشابه
Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template.
The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic a...
متن کاملIdentification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolysis of 4-CBA-CoA to 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA) via a nucleophilic aromatic substitution pathway involving the participation of an active site carboxylate side chain in covalent catalysis. In this paper we report on the identification of conserved aspartate, histidine, and tryptophan residues essential to 4-CBA...
متن کاملHistidine 90 function in 4-chlorobenzoyl-coenzyme a dehalogenase catalysis.
4-chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA by attack of Asp145 on the C4 of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of chloride ion to form an arylated enzyme intermediate (EAr) and, finally, ester hydrolysis in EAr to form 4-hydroxybenzoyl-CoA (4-HBA-CoA). This study examines the c...
متن کاملEvidence for electrophilic catalysis in the 4-chlorobenzoyl-CoA dehalogenase reaction: UV, Raman, and 13C-NMR spectral studies of dehalogenase complexes of benzoyl-CoA adducts.
This paper reports on the mechanism of substrate activation by the enzyme 4-chlorobenzoyl coenzyme A dehalogenase. This enzyme catalyzes the hydrolytic dehalogenation of 4-chlorobenzoyl coenzyme A (4-CBA-CoA) to form 4-hydroxybenzoyl coenzyme A (4-HBA-CoA). The mechanism of this reaction is known to involve attack of an active site carboxylate (Asp or Glu side chain) at C(4) of the substrate be...
متن کاملInvestigation of substrate activation by 4-chlorobenzoyl-coenzyme A dehalogenase.
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolysis of 4-CBA-CoA to 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA), using the carboxylate side chain of aspartate 145 to displace the chloride from C(4) of the benzoyl ring. Previous UV-visible, Raman, and 13C NMR studies of enzyme-bound substrate analog or product ligand indicated that the environment of the enzyme active site i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 40 51 شماره
صفحات -
تاریخ انتشار 2001